Preparation of Nanocellulose via Transition Metal Salt- Catalyzed Hydrolysis Pathway
نویسندگان
چکیده
Nanocellulose was successfully prepared from microcrystalline cellulose (MCC) via nickel salt-catalyzed hydrolysis under mild reaction conditions of 45 °C for 15 min. The mild acid nickel salt-catalyzed hydrolysis was able to selectively depolymerize the amorphous regions of cellulose and retain its crystalline region, thus improving the crystallinity of the treated product at the nanoscale up to 80%. FTIR analysis confirmed that the basic cellulose structure of inorganic metal salt-treated products was maintained and that no derivative was formed. Furthermore, the synthesized Nitreated nanocellulose (NTC) products appeared in the form of cluster fragments with spider-web-like appearance (fiber diameter of 10 to 60 nm and fiber length of 300 to 600 nm), thus providing aspect ratios in the range of 7.96 to 9.11. In addition, NTC products exhibited relatively higher thermal stability as compared to MCC because of the presence of high crystallinity phases and the absence of impurities (such as nitrate ions) on the nanocellulose surface. Thus, the present study concluded that nickelbased inorganic salt is an efficient and selective catalyst for the hydrolysis of MCC with high simplicity in operation and short preparation time.
منابع مشابه
A Response Surface Methodology Study: Effects of Trivalent Cr Metal Ion-Catalyzed Hydrolysis on Nanocellulose Crystallinity and Yield
The preparation of nanocellulose via Cr(NO3)3-assisted sulfuric acid hydrolysis was optimized using response surface methodology (RSM). The experiment was performed using a five-level, four-factor central composite design coupled with RSM in order to optimize nanocellulose crystallinity and product yield. Four factors were evaluated for the preparation of nanocellulose: (1) reaction temperature...
متن کاملPreparation of Spherical Nanocellulose by Anaerobic Microbial Consortium
This work demonstrates the preparation of spherical nanocellulose from microcrystalline cellulose by controlled hydrolysis using anaerobic microbial consortium. The nanocellulose formed during the degradation of microcrystalline cellulose was separated by ultra filtration membrane and purified by differential centrifugation. The purified nanocellulose was characterized by nanoparticle size anal...
متن کاملA novel and efficient procedure for the preparation of benzyl alcohol by hydrolysis of benzyl chloride catalyzed by PEG1000-DAIL[BF4]/Fe2(SO4)3 under homogeneous catalysis in aqueous media
In this work, benzyl alcohol was obtained in 96% excellent yield by hydrolysis of benzyl chloride catalyzedby the recyclable temperature-dependant phase-separation system that comprised the ionic liquid PEG1000-DAIL[BF4], toluene and ferric sulfate under homogeneous catalysis in aqueous media. This novel methodnot only enhanced the yield, but also made the operating units easy workup. The catal...
متن کاملEasy Fabrication of Highly Thermal-Stable Cellulose Nanocrystals Using Cr(NO3)3 Catalytic Hydrolysis System: A Feasibility Study from Macro- to Nano-Dimensions
This study reported on the feasibility and practicability of Cr(NO₃)₃ hydrolysis to isolate cellulose nanocrystals (CNCCr(NO3)3) from native cellulosic feedstock. The physicochemical properties of CNCCr(NO3)3 were compared with nanocellulose isolated using sulfuric acid hydrolysis (CNCH2SO4). In optimum hydrolysis conditions, 80 °C, 1.5 h, 0.8 M Cr(NO₃)₃ metal salt and solid-liquid ratio of 1:3...
متن کاملPreparation and Properties of Nanocellulose from Organosolv Straw Pulp
The object of this work is to present a study of nanocellulose preparation from organosolv straw pulp (OSP) and its properties. OSP was obtained through thermal treatment in the system of isobutyl alcohol-H2O-KOH-hydrazine followed by processing in the mixture of acetic acid and hydrogen peroxide for bleaching and removal of residual non-cellulosic components. We have obtained nanocellulose fro...
متن کامل